Глава 4. Walter. Операция ЧПУ.

Операция ЧПУ применяется в случае необходимости задания пользовательского движения рабочего хода шлифовального круга. При таком движении доступны все основные G-коды.

Раздел 1. G-коды.

При программировании станков с ЧПУ каждое движение задается одним кадром. Кадр — строка, в которой полностью определено как и куда нужно спозиционировать шлифовальный круг и заготовку. Сначала в кадре указывается код G, определяющий тип движения, а затем его параметры. Порядок параметров и способ записи (через пробел, знак табуляции или слитно) не имеет значения. Обычно при записи кадров не записываются неизменяющиеся параметры.

G00- холостой ход. Такое движение не имеет настройки подачи, так как производится только без контакта с заготовкой. Синтаксис: $G00~X_Y_Z_A_C_$. Например, для перемещения в точку $X=100~{\rm mm}$, $Y=100~{\rm mm}$, $Z=100~{\rm mm}$ с позиционированием осей $A=0~{\rm in}$ $C=0~{\rm con}$ градусов G-код будет иметь вид G00~X100~Y100~Z100~A0~C0. Для задания дробных значений в качестве разделительного знака используется «точка». Некоторые стойки ЧПУ могут не понимать целых чисел, в таком случае для исключении ошибки целые числа следует писать в виде «100.».

G01 – рабочее движение по прямой. Такое движение имеет аналогичный G00 синтаксис, однако имеет настройку подачи. Подача указывается в мм/мин и имеет код F. Синтаксис: G01 X__ Y__ Z__ A__ C__ F__. Например, для перемещения в точку X=100 мм, Y=100 мм, Z=100 мм с позиционированием осей A=0 и C=0 градусов на подаче 100мм/мин G код будет иметь вид G01 X100 Y100 Z100 A0 C0 F100. Если в настройке операции указана подача, то задаваемая в ЧПУ кодом F подача будет назначена только в том случае, если она меньше указанной в настройке операции, иначе будет установлена подача из настройки операции.

G02 — движение по часовой стрелке. Центр вращения при таком движении вычисляется автоматически исходя из текущей позиции и заданной в коде позиции для перемещения в нее при заданном радиусе $R_{_}$. Синтаксис: $G02\ X_{_}\ Y_{_}\ Z_{_}\ A_{_}\ C_{_}\ R_{_}\ F_{_}$. Например, для перемещения в точку $X=150\ \text{мм},\ Y=150\ \text{мм},\ Z=150\ \text{мм}$ при установке осей A и C градусов в координату 0, движении по радиусу $R=500\ \text{мм}$ на подаче $100\ \text{мм}$ /мин G код будет иметь вид $G02\ X150\ Y150\ Z150\ A0\ C0\ R500\ F100$.

G03 – движение против часовой стрелки. Синтаксис команды полностью аналогичен синтаксису команду G02.

Раздел 2. Кинематика станков Walter.

Кинематика станков Walter такова, что движение вдоль оси X происходит посредством стола, на котором установлена передняя бабка с патроном и

заготовкой, движение вдоль осей Y и Z происходит шпиндельным узлом с установленным шлифовальным кругом.

Поз. 1, Рисунок 16 — Шлифовальный круг повернут и смещен на l_6 относительно торца.

Поз. 2, Рисунок 16 – Шлифовальный круг восстановлен на ось заготовки.

$$X_{\rm CM} = l_{\rm CM} - l_{\rm CM} \cos(C)$$
$$Z_{\rm CM} = l_{\rm CM} \sin(C)$$

Поз. 3, Рисунок 16 — Шлифовальный круг прошел в рабочем режиме вдоль оси заготовки безопасное расстояние (l_6) и канавку (l_{κ}).

$$X_{p} = (l_{6} + l_{K})\cos(C)$$

$$Z_{p} = (l_{6} + l_{K})\sin(C)$$

$$l = \frac{\pi * r_{3a\Gamma} * A_{p}}{180}; tg(\omega) = \frac{l}{Z_{p}} \rightarrow A_{p} = \frac{180 * Z_{p} * tg(\omega)}{\pi * r_{3a\Gamma}}$$

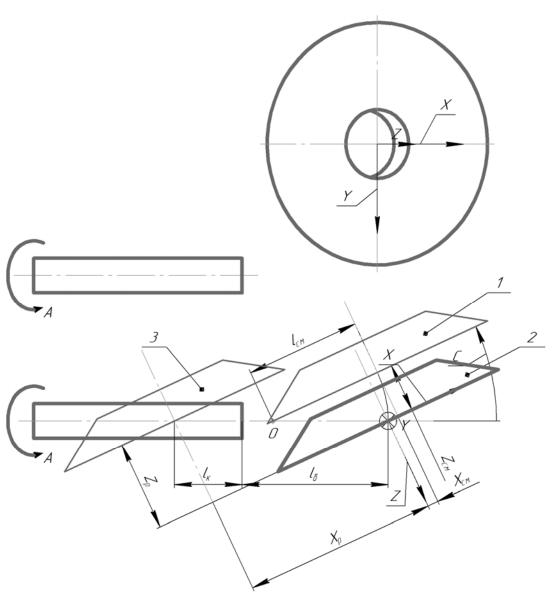
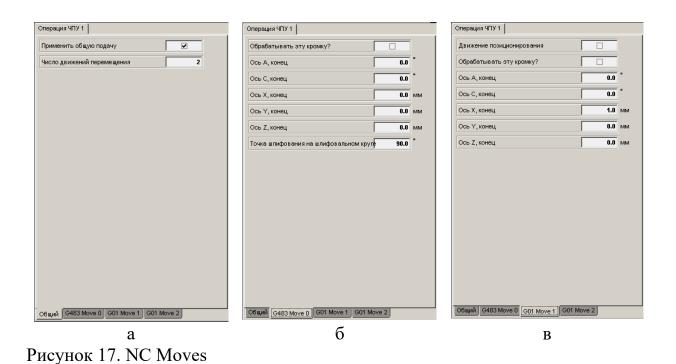



Рисунок 16. Расчет координат при изготовлении канавки

Раздел 3. NC Moves.

В режиме NC Moves программа позволяет набрать операцию пользовательского движения через ряд вкладок. В первой вкладке (Рисунок 17, а) выбирается количество движений и необходимость назначения общей Bo второй вкладке (Рисунок 17, б) назначается (установочное) перемещение (G483, Move0) шлифовального абсолютных координатах станка. В третьей и последующих вкладках (Рисунок 17, в) назначаются координаты конечного положения шлифовального круга. В случае назначения «движения позиционирования» шлифовальный круг не должен находится в контакте в заготовкой, так как движения будут выполнены на холостых ходах. При работе в NC Moves режиме необходимо учитывать, движения рассчитываются только относительно последнего положения круга, т.е. включена команда G91. Настройка подачи в NC Moves происходит в глобальной области, как у всех операций Walter.

Например, программа изготовления правой винтовой канавки леворежущего инструмента шлифовальным кругом 1V1 диаметром 100мм (Рисунок 18) будет иметь следующий вид:

G483 A0 C0 X30 Y-52 Z0 (Точка шлифования 90) G01 A-30 X40 Y0

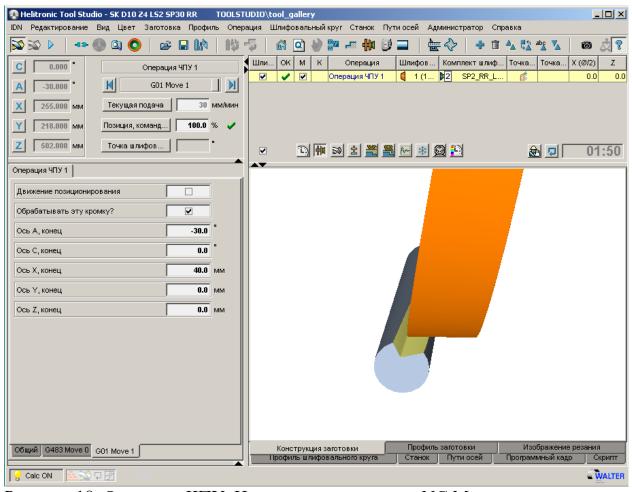


Рисунок 18. Операция ЧПУ. Изготовление канавки. NC Moves

Раздел 4. FlexProg.

Полной аналогией NC Moves является тип Операции ЧПУ — FlexProg, однако в данном случае код ЧПУ будет задан текстом. Весь код ЧПУ вводится в поле ввода и применяется после снятия фокуса с этого поля (например, кликнув в любое доступное для ввода поле). Движения будут рассчитаны так, как будет указано в коде. При задании G90 или ничего не задав — абсолютно, при задании G91 — относительно последнего положения шлифовального круга. Настройка подачи в FlexProg происходит в глобальной области, как у всех операций Walter. В случае задания подачи в G коде глобальная настройка переопределяется подачей, указанной в коде F.

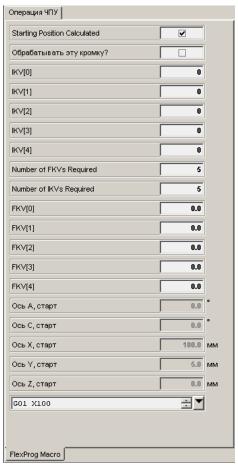


Рисунок 19. FlexProg

Программа изготовления правой винтовой канавки леворежущего инструмента шлифовальным кругом 1V1 диаметром 100мм с вылетом заготовки 60мм на станке Helitronic Power (Рисунок 20) будет тогда иметь вид:

G00 A0 C0 X220 Y218 Z502 G01 A-30 X260

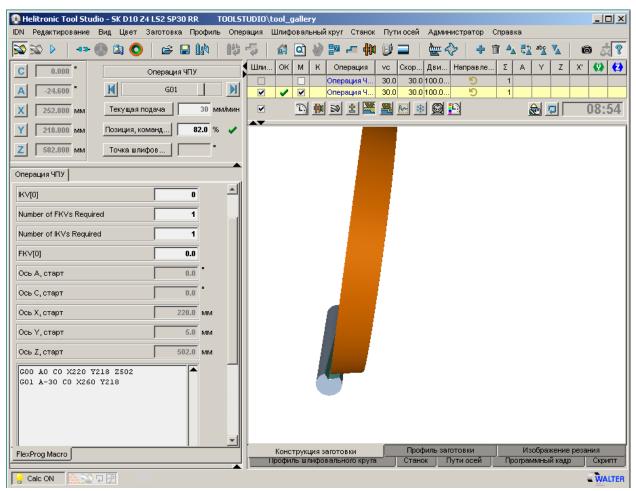


Рисунок 20. Операция ЧПУ. Изготовление канавки. FlexProg

Раздел 5. Задачи

- 1. Написать программу изготовления канавки длиной 20 мм. Исходные данные: длина заготовки: 83 мм, вылет заготовки: 60 мм, диаметр заготовки 10 мм, высота канавки 3 мм, диаметр шлифовального круга 100 мм, ширина шлифовального круга 10 мм, профиль шлифовального круга 1V1, угол профиля (с осью) шлифовального круга 10 градусов. Угол наклона винтовой линии канавки 30 градусов. Шлифовальный круг установлен параллельно оси заготовки.
- 2. Написать программу изготовления канавки длиной 20 мм. Исходные данные: длина заготовки: 83 мм, вылет заготовки: 60 мм, диаметр заготовки 16 мм, высота канавки 5 мм, диаметр шлифовального круга 125 мм, ширина шлифовального круга 14 мм, профиль шлифовального круга 1A1. Шлифовальный круг установлен под углом 10 градусов к оси заготовки в сторону угла наклона винтовой линии канавки.

Вопросы для контроля:

1. Какие Вы знаете способы задания кода ЧПУ в Walter?

- 2. В каком типе систем координат изначально рассчитываются движения при работе в FlexProg?
- 3. Какой код имеет начальное (установочное) перемещение в NC Moves?
- 4. Что нужно настроить в программе Walter для обработки с помощью операции ЧПУ.

Глава 5. Справочные данные по станкам Walter

Таблица 1. Координаты центров вращения оси С станков Walter.

Станок	X	Y	Z
Helitronic Power	230	270	238
Helitronic Mini	175	163	173

При позиционирования шлифовального круга в центр вращения по оси Z необходимо учитывать вылет шлифовального круга $(Z_{\kappa p})$ и по необходимости его ширину (W):

$$Z_{\text{центр}} = Z - Z_{\text{кр}} - W$$